在许多计算机断层扫描(CT)成像应用程序中,重要的是快速收集来自移动或随时间变化的对象的数据。通常假设断层图像是逐步拍摄的,其中物体旋转到每个期望的角度,并且拍摄视图。然而,阶梯和射击采集缓慢并且可以浪费光子,因此在实践中,在收集数据的同时连续旋转物体的情况下进行飞行扫描。然而,这可能导致运动模糊的视图,从而与严重运动伪影进行重建。在本文中,我们介绍了Codex,一个模块化框架,用于联合去模糊和断层切断重建,可以有效地颠倒在扫描中引入的运动模糊。该方法是具有新型非凸贝叶斯重建算法的新型采集方法的协同组合。 Codex通过使用重建算法的已知二进制代码编码采集而作证,然后重转反转。使用良好选择的二进制代码进行编码测量可以提高反转过程的准确性。 Codex重建方法使用乘法器(ADMM)的交替方向方法将逆问题分成迭代解训和重建子问题,使重建实用实现。我们对模拟和实验数据的重建结果显示了我们方法的有效性。
translated by 谷歌翻译
Telling stories is an integral part of human communication which can evoke emotions and influence the affective states of the audience. Automatically modelling emotional trajectories in stories has thus attracted considerable scholarly interest. However, as most existing works have been limited to unsupervised dictionary-based approaches, there is no labelled benchmark for this task. We address this gap by introducing continuous valence and arousal annotations for an existing dataset of children's stories annotated with discrete emotion categories. We collect additional annotations for this data and map the originally categorical labels to the valence and arousal space. Leveraging recent advances in Natural Language Processing, we propose a set of novel Transformer-based methods for predicting valence and arousal signals over the course of written stories. We explore several strategies for fine-tuning a pretrained ELECTRA model and study the benefits of considering a sentence's context when inferring its emotionality. Moreover, we experiment with additional LSTM and Transformer layers. The best configuration achieves a Concordance Correlation Coefficient (CCC) of .7338 for valence and .6302 for arousal on the test set, demonstrating the suitability of our proposed approach. Our code and additional annotations are made available at https://github.com/lc0197/emotion_modelling_stories.
translated by 谷歌翻译
Many real-world systems can be represented as graphs where the different entities are presented by nodes and their interactions by edges. An important task in studying large datasets is graph clustering. While there has been a lot of work on graph clustering using the connectivity between the nodes, many real-world networks also have node attributes. Clustering attributed graphs requires joint modeling of graph structure and node attributes. Recent work has focused on graph convolutional networks and graph convolutional filters to combine structural and content information. However, these methods are mostly limited to lowpass filtering and do not explicitly optimize the filters for the clustering task. In this paper, we introduce a graph signal processing based approach, where we design polynomial graph filters optimized for clustering. The proposed approach is formulated as a two-step iterative optimization problem where graph filters that are interpretable and optimal for the given data are learned while maximizing the separation between different clusters. The proposed approach is evaluated on attributed networks and compared to the state-of-the-art graph convolutional network approaches.
translated by 谷歌翻译
仿真环境的兴起已经实现了基于学习的组装计划的方法,否则这是一项劳动密集型和艰巨的任务。组装家具特别有趣,因为家具是复杂的,对基于学习的方法构成了挑战。令人惊讶的是,人类可以解决组装产品的2D快照。尽管近年来见证了家具组装的有希望的基于学习的方法,但他们假设每个组装步骤都有正确的连接标签,这在实践中很昂贵。在本文中,我们减轻了这一假设,并旨在以尽可能少的人类专业知识和监督来解决家具。具体而言,我们假设组装点云的可用性,并比较当前组件的点云和目标产品的点云,请根据两种措施获得新的奖励信号:不正确和不完整。我们表明,我们的新颖奖励信号可以训练一个深层网络,以成功组装不同类型的家具。可用的代码和网络:https://github.com/metu-kalfa/assemblerl
translated by 谷歌翻译
我们将零温度的大都市蒙特卡洛算法作为通过最大程度地减少损失函数来训练神经网络的工具。我们发现,正如理论上的预期,并在其他作者的经验上表现出来,Metropolis Monte Carlo可以训练具有与梯度下降相当的准确性(即使不一定那么快)的准确性。当神经网络的参数数量较大时,大都市算法不会自动失败。当神经网络的结构或神经元激活是强大的异质性时,它可能会失败,并且我们引入了一种自适应的蒙特卡洛算法AMC来克服这些局限性。 Monte Carlo方法的内在随机性和数值稳定性使AMC可以训练深层神经网络和经常性的神经网络,其中梯度太小或太大,无法通过梯度下降进行训练。 Monte Carlo方法为培训神经网络的基于梯度的方法提供了补充,从而可以访问一组不同的网络架构和原理。
translated by 谷歌翻译